Now that we have established the basic concepts, let's look at some examples.
A bicycle wheel rotates 5 complete revolutions in 2 seconds. Calculate
- The angular displacement in radians.
- The average angular velocity in rad/s.
Solution:
- \(\theta = 5 \times 2 \pi = 10 \pi \; \text{rad}\)
- \(\omega = \frac{\Delta \theta}{\Delta t} = \frac{10 \pi \; \text{rad}}{2 \; s} = 5 \pi \; \text{rad/s}\)
A disc of radius 0.5 m rotates at 120 rpm. Find
- The angular velocity in rad/s.
- The linear speed of a point on the edge.
Solution:
- \(120 \; \text{rpm} \times \frac{\pi}{30} = 4 \pi \; \text{rad/s}\)
- \(v = r \omega = 0.5 \; \text{m} \times 4 \pi \; \text{rad/s} = 2 \pi \; \text{m/s}\)
A car’s tire of radius 0.3 m rotates at 20 rad/s. Find
- The linear speed of a point on the tire’s edge.
- The centripetal acceleration.
Solution:
- \(v = r \omega = 0.3 \; \text{m} \times 20 \; \text{rad/s} = 6 \; \text{m/s}\)
- \(a_c = \omega ^2 r =(20 \; \text{rad/s})^2 \times 0.3 \; \text{m} = 120 \; \text{m/s}^2\)